Subscribe to RSS
DOI: 10.1055/s-0029-1217349
(η6-Arene)RuII/Chiral SN Ligand: A Novel Bifunctional Catalyst System for Asymmetric Transfer Hydrogenation of Aromatic Ketones
Publication History
Publication Date:
02 June 2009 (online)

Abstract
A binary catalyst system of [RuCl2(η6-arene)]2 and a protic aminothiol (SN) ligand has been found to promote hydrogen transfer between alcohols and carbonyl compounds. The chiral catalyst system with the pipecolinol-derived chiral SN ligand displays excellent stereoselectivity in the asymmetric transfer hydrogenation of aromatic ketones using HCO2H-Et3N. Novel unsymmetrical bis(thiolate)-bridged binuclear complex, which is relevant to the generation of catalytically active species, has been synthesized and structurally characterized.
Key words
[RuCl2(η6-arene)]2 - protic aminothiol ligand - asymmetric transfer hydrogenation - aromatic ketone - bifunctionality
- 1a
Ito M.Ikariya T. J. Synth. Org. Chem. Jpn. 2008, 66: 1042Reference Ris Wihthout Link - 1b
Ito M.Ikariya T. Chem. Commun. 2007, 5134Reference Ris Wihthout Link - 1c
Ikariya T.Blacker AJ. Acc. Chem. Res. 2007, 40: 1300Reference Ris Wihthout Link - 1d
Ikariya T.Murata K.Noyori R. Org. Biomol. Chem. 2006, 4: 393Reference Ris Wihthout Link - 2a
Ito M.Hirakawa M.Murata K.Ikariya T. Organometallics 2001, 20: 379Reference Ris Wihthout Link - 2b
Ito M.Hirakawa M.Osaku A.Ikariya T. Organometallics 2003, 22: 4190Reference Ris Wihthout Link - 2c
Ito M.Sakaguchi A.Kobayashi C.Ikariya T. J. Am. Chem. Soc. 2007, 129: 290Reference Ris Wihthout Link - 2d
Ito M.Koo L.-W.Himizu A.Kobayashi C.Sakaguchi A.Ikariya T. Angew. Chem. Int. Ed. 2009, 48: 1324Reference Ris Wihthout Link - 3a
Ito M.Osaku A.Kitahara S.Hirakawa M.Ikariya T. Tetrahedron Lett. 2003, 44: 7521Reference Ris Wihthout Link - 3b
Ito M.Kitahara S.Ikariya T. J. Am. Chem. Soc. 2005, 127: 6172Reference Ris Wihthout Link - 3c
Ito M.Osaku A.Shiibashi A.Ikariya T. Org. Lett. 2007, 9: 1821Reference Ris Wihthout Link - 3d
Ito M.Osaku A.Kobayashi C.Shiibashi A.Ikariya T. Organometallics 2009, 28: 390Reference Ris Wihthout Link - 4a
Capper G.Davies DL.Fawcett J.Russell DR. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1995, 51: 578Reference Ris Wihthout Link - 4b
Wang F.Chen H.Parkinson JA.Murdoch PS.Sadler PJ. Inorg. Chem. 2002, 41: 4509Reference Ris Wihthout Link - 4c
A part of this work was presented in 2007 on the 54th symposium on organometallic chemistry at Hiroshima, Japan (A206) as well as in 2008 on the 102nd CATSJ Meeting at Nagoya, Japan (3K03).
Reference Ris Wihthout Link - 5
Dijksman A.Elzinga JM.Li Y.-X.Arends IWCE.Sheldon RA. Tetrahedron: Asymmetry 2002, 13: 879 - 6a
Bennett MA.Matheson TW.Robertson GB.Smith AK.Tucker PA. Inorg. Chem. 1980, 19: 1014Reference Ris Wihthout Link - 6b
Bennett MA.Huang T.-N.Matheson TW.Smith AK. Inorg. Synth. 1982, 21: 74Reference Ris Wihthout Link - 7a
Ishibashi H.Uegaki M.Sakai M. Synlett 1997, 915Reference Ris Wihthout Link - 7b
Ishibashi H.Uegaki M.Sakai M.Takeda Y. Tetrahedron 2001, 57: 2115Reference Ris Wihthout Link - 7c
Carroll FI.White JD.Wall ME. J. Org. Chem. 1963, 28: 1236Reference Ris Wihthout Link - 9a
Hashiguchi S.Fujii A.Takehara J.Ikariya T.Noyori R. J. Am. Chem. Soc. 1995, 117: 7562Reference Ris Wihthout Link - 9b
Haack KJ.Hashiguchi S.Fujii A.Ikariya T.Noyori R. Angew. Chem., Int. Ed. Engl. 1997, 36: 285Reference Ris Wihthout Link - 9c
Takehara J.Hashiguchi S.Fujii A.Inoue S.-I.Ikariya T.Noyori R. Chem. Commun. 1996, 233Reference Ris Wihthout Link - 10a
Fujii A.Hashiguchi S.Uematsu N.Ikariya T.Noyori R. J. Am. Chem. Soc. 1996, 118: 2521Reference Ris Wihthout Link - 10b
Palmer M.Walsgrove T.Wills M. J. Org. Chem. 1997, 62: 5226Reference Ris Wihthout Link - 10c
Alonso DA.Nordin SJM.Roth P.Tarnai T.Andersson PG.Thommen M.Pittelkow U. J. Org. Chem. 2000, 65: 3116Reference Ris Wihthout Link - 13a
Details will be reported separately.
Reference Ris Wihthout Link - 13b
Preparation of ( S , S )-15e
A mixture of [RuCl2 (hmb)]2 (314.5 mg, 0.470 mmol), (S)-2e˙HCl (143.1 mg, 0.931 mmol), and KOt-Bu (157.1 mg, 1.40 mmol) in CH2Cl2 (6 mL) was stirred at r.t. for 12 h. Removal of the solvent under reduced pressure gave a dark yellow powder, which was washed with THF and then extracted with CH2Cl2. The extract was concentrated in vacuo to give a red solid, which was purified by recrys-tallization from MeOH and Et2O to give pure (S,S)-15e as red crystals (258.0 mg, 63%). ¹H NMR (300 MHz, CD2Cl2, 300 K): δ = 1.81-1.90 (m, 5 H), 1.98-2.10 (m, 4 H), 2.02 (s, 18 H), 2.11 (s, 18 H), 2.02-2.32 (m, 5 H), 2.69-2.72 (m, 2 H), 2.88-2.90 (m, 1 H), 3.25-3.27 (m, 1 H), 3.81-3.83 (m, 1 H), 6.07 (br s, 1 H), 9.61 (br s, 1 H), 10.32 (br s, 1 H). ¹³C{¹H} NMR (75 MHz, CO2Cl2, 300 K): δ = 15.3, 15.6, 24.0, 26.6, 27.2, 27.6, 30.8, 45.1, 50.1, 52.8, 58.5, 75.0, 95.3, 96.0. Anal. Calcd for C34H57Cl3N2Ru2S2×5/2H2O: C, 44.8; H, 6.86; N, 3.07. Found: C, 44.74; H, 6.94; N, 3.20. CCDC-717904 contains the supplementary crystallographic data
for (S,S)-15e. These data can be obtained free of charge
from the Cambridge Crystallographic Data Centre via
http://www.ccdc.cam.ac.uk/data_request/cif.Reference Ris Wihthout Link - 14
Koike T.Ikariya T. Adv. Synth. Catal. 2004, 346: 37 - 15a
Yield 95%, based on (S)-4-phenyl-2-oxazolidinone. ¹H NMR (300 MHz, CDCl3, 300 K): δ = 1.21 (br s, 2 H), 2.53 (dd, J = 13.3, 9.0 Hz, 1 H), 2.68 (dd, J = 13.3, 4.2 Hz, 1 H), 3.61 (s, 2 H), 3.94 (dd, J = 9.0, 4.2 Hz, 1 H), 7.18-7.27
(m, 10 H).Reference Ris Wihthout Link - 15b
Yield 25%, based on (S)-4-isopropyl-2-oxazolidinone. ¹H NMR (300 MHz, CDCl3, 300 K):
δ = 0.83-0.86 (m, 6 H), 1.28 (br s, 2 H), 1.54-1.65 (m, 1 H), 2.24 (dd, J = 13.6, 3.7 Hz, 1 H), 2.56-2.61 (m, 2 H), 3.69 (s, 2 H), 7.18-7.30 (m, 5 H).Reference Ris Wihthout Link - 15c
Yield 82%, based on (S)-4-benzyl-2-oxazolidinone. ¹H NMR (300 MHz, CDCl3, 300 K): δ = 1.27 (br s, 2 H), 2.34 (dd, J = 13.2, 8.3 Hz, 1 H), 2.56-2.62 (m, 2 H), 2.73 (dd, J = 13.2, 5.6 Hz, 1 H), 3.04-3.12 (m, 1 H), 3.69 (s, 2 H), 7.16-7.30 (m, 10 H).
Reference Ris Wihthout Link - 15d
Yield 81%, based on N,O-carbonyl-l-prolinol.³d ¹H NMR (300 MHz, CDCl3, 300 K): δ = 1.31-1.43 (m, 1 H), 1.67-1.93 (m, 4 H), 2.49-2.53 (m, 2 H), 2.82-2.88 (m, 1 H), 2.92-3.00 (m, 1 H), 3.13-3.22 (m, 1 H), 3.74 (s, 2 H), 7.21-7.31 (m, 5 H).
Reference Ris Wihthout Link - 16a
Bruk YA.Derzhavets AA.Pavlova LV.Rachinskii FY.Slavachevskaya NM. J. Gen. Chem. USSR 1970, 40: 2300Reference Ris Wihthout Link - 16b
Meinzer A.Breckel A.Thaher BA.Manicone N.Otto H.-H. Helv. Chim. Acta 2004, 87: 90Reference Ris Wihthout Link - 16c
Myllymäki VT.Lindvall MK.Koskinen AMP. Tetrahedron 2001, 57: 4629Reference Ris Wihthout Link - 16d
Handrick GR.Atkinson ER.Granchelli FE.Bruni RJ. J. Med. Chem. 1965, 8: 762Reference Ris Wihthout Link - 16e
Schwenkkraus P.Otto H.-H. Arch. Pharm. 1990, 323: 93Reference Ris Wihthout Link - 16f
Chi DY.O’Neil JP.Anderson CJ.Welch MJ.Katzenellenbogen JA. J. Med. Chem. 1994, 37: 928Reference Ris Wihthout Link - 16g
Franzen V. Chem. Ber. 1957, 90: 2036Reference Ris Wihthout Link - 16h
Searles S.Roelofs GE.Tamres M.McDonald RN. J. Org. Chem. 1965, 30: 3443Reference Ris Wihthout Link
References and Notes
The rate difference between enantiomeric 1 became more significant with the catalyst system with (S)-2e. Thus, it reduced the ee value of (S)-1 (>99% ee) to 13% within 6 h but that of (R)-1 (>99% ee) did not change significantly (94%) under identical conditions.
11In contrast with the outcome in entry 1 of Table [¹] , (S)-1 with moderate ee (61%) was obtained from 3 in lower yield (38%) with the binary catalyst system of [RuCl2 (hmb)]2 and (S)-pipecolinol with under otherwise identical conditions.
12The catalyst system of [RuCl2 (η6-p-cymene)]2 and (S)-2f˙HCl promoted the ATH of 3 to give (S)-1 with 12% ee in 31% yield and that with [RuCl2 (η6-benzene)]2 and (S)-2f˙HCl hardly promoted the ATH of 3 to give rac-1 in 4% yield under otherwise identical conditions.